

Duration: 120 Hrs

Days: 20

Exam Code: AT-120

Executive Summary:

This curriculum is designed to provide an **integrated learning experience** in **Artificial Intelligence (AI)** and **Robotics**, with a strong focus on the application of **data science** techniques in the development of intelligent robotic systems. The program spans over **20 days**, with **6 hours per day**, combining both **theoretical foundations** and **hands-on applications** to ensure a comprehensive understanding of key concepts in **data science, machine learning, deep learning, and robotics**.

Day 1-2: Module 1 - Introduction to AI and Data Science (6 hours per day)

- **Topic 1.1: Introduction to AI and Data Science**
 - Definition, applications, and subfields of AI (ML, Deep Learning, NLP)
 - Role of AI in various industries
 - Use-case examples
 - Case studies
- **Topic 1.2: The AI Development Life Cycle**
 - Overview of the AI development life cycle
 - Key steps in building AI models
 - Use-case examples
 - Case studies
- **Topic 1.3: Data Sources and Its Types**
 - Overview of Data and Its Sources
 - Types of Data: Structured, Semi-structured, Unstructured
 - Data Storage Technologies: Relational and NoSQL Databases
 - Use-case examples
 - Case studies
 - Hands-on exercises

Module 2: Python Programming for Data Science

- **Topic 2.1: Introduction to Python Programming**
 - Importance of Python in data science
 - Basic Python programming concepts:
 - Variables and Data Types
 - Control Flow (if-else) and Loops
 - Functions
 - Lists and Dictionaries
 - Tuples in Python

- Differences Between Lists, Tuples, and Dictionaries
- Object-Oriented Programming (OOP)
- Hands-on exercises
- **Topic 2.2: Python Programming for Data Science and ML**
 - Introduction to Python libraries for Data Science:
 - NumPy
 - Pandas
 - Scikit-Learn
 - Matplotlib
 - Seaborn
 - Hands-on exercises

Day 3–4: Module 3 - Data Science and Machine Learning (6 hours per day)

- **Topic 3.1: Data Science Life Cycle and Machine Learning Overview**
 - Basic concepts of Data Science
 - Overview of Machine Learning and its working models
 - Phases of machine learning: Business problem understanding, data preparation, exploratory data analysis (EDA)
 - Handling outliers and Data Transformation Techniques
 - Data Visualization and types of Data Visualization
 - **Real-time Data Processing for Robotics:**
 - Techniques for processing and analyzing data in real-time, focusing on streaming data for robotics.
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 3.2: Supervised Learning Algorithms**
 - Supervised Learning concepts and working diagram
 - Supervised Learning Algorithms and their application in robotics:
 - Classification vs. Regression
 - Random Forest
 - Logistic Regression
 - SVM
 - Decision Trees
 - **Time Series Forecasting for Predictive Modeling:**
 - Techniques such as ARIMA, Exponential Smoothing, and Seasonal Decomposition for forecasting time-based data (e.g., stock prices, demand trends)
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 3.3: Unsupervised Learning**
 - Unsupervised Learning concepts and working diagram
 - Unsupervised Learning Algorithms and their application in robotics:

- Clustering
- Dimensionality reduction
- Association rule mining algorithms
- Uncovering data patterns and relationships without labels, empowering robots with nuanced understanding and adaptable responses to diverse environments
- Use-case examples
- Case studies
- Hands-on exercises

Day 5–6: Module 4 - Deep Learning Foundations (6 hours per day)

- **Topic 4.1: Introduction to Neural Networks and Deep Learning**
 - Neural Network concepts and applications
 - Structure and types of neural networks (Feedforward, CNNs, RNNs)
 - **Meta-learning and AutoML: Enhancing Model Training and Selection:**
 - Introduction to Meta-learning for optimizing models by learning how to learn
 - AutoML for automating hyperparameter tuning and model selection processes
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 4.2: Convolutional Neural Networks (CNNs) for Image Recognition**
 - CNN concepts and applications
 - How CNN works
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 4.3: Sensor Fusion for Robotics**
 - How to combine data from multiple sensors (e.g., LiDAR, cameras) to improve robotic perception and decision-making.

Day 7–8: Module 5 - Advanced AI and Robotics (6 hours per day)

- **Topic 5.1: Robotics and AI Integration**
 - Basics of robotics and intelligent agents
 - Introduction to ROS (Robot Operating System)
 - Role of AI in robotics
 - Types of AI used in robotics
 - Use-case examples
 - Case studies
 - Hands-on exercises

- **Topic 5.2: Deep Learning, Neural Networks, and Their Relevance to Robotics**
 - Impact of Deep Learning in robotics
 - Impact of Neural Networks in robotics
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 5.3: Reinforcement Learning for Robotics**
 - Fundamentals of Reinforcement Learning (RL)
 - Applications of RL in robotics
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 5.4: ROS 2.0 and Cloud Robotics**
 - Introduction to ROS 2.0 for robotic development and cloud robotics for offloading computation.

Day 9–10: Module 6 - Generative AI and NLP (6 hours per day)

- **Topic 6.1: Generative AI (GANs, VAEs)**
 - Overview of Generative Models and their working diagrams
 - Types of Generative Models
 - Applications of Generative AI in robotics
 - **Generative AI for Data Augmentation and Synthetic Data Generation:**
 - How GANs and VAEs can generate additional training data for imbalanced datasets (e.g., generating synthetic images, text, or sensor data)
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 6.2: NLP for Robotics**
 - Basics of Natural Language Processing (NLP) and its application in robotics
 - NLP algorithms for recognizing and processing voice commands
 - **Human-Robot Interaction (HRI): Voice-Controlled Robots:**
 - Teach how robots can use voice-activated control systems for seamless human interaction (e.g., assistive robots in healthcare, customer service robots in retail)
 - **Fine-tuning Large Language Models (LLMs) for Robotics Applications:**
 - Fine-tuning models like GPT-3, BERT, or T5 for NLP tasks (text summarization, question answering, language translation) in robotic systems
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 6.3: Edge Computing for Real-time Decision-making in Robotics**

- How edge computing enables real-time data processing directly on robots for autonomous tasks.

Day 11–12: Module 7 - AI in Robotics and Automation (6 hours per day)

- **Topic 7.1: Neural Networks and Robotics**
 - Understanding Artificial Neural Networks (ANNs) in robotic perception
 - Feedforward and Backpropagation concepts and their application in robotics
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 7.2: Transfer Learning and Pretrained Models**
 - Transfer Learning basic concepts
 - Understanding pretrained models
 - **Transfer Learning for Robotic Perception Tasks:**
 - How pretrained models for image recognition, object detection, or pose estimation can be adapted for robotic tasks such as navigation and object manipulation
 - Use-case examples
 - Case studies
 - Hands-on exercises

Day 13–14: Module 8 - AI in Industrial Robotics (6 hours per day)

- **Topic 8.1: Autonomous Systems and Intelligent Agents**
 - Characteristics of Autonomous Systems
 - Basics of Intelligent Agents and their impact in robotics
 - Examples of autonomous systems (e.g., self-driving cars)
 - **Swarm Robotics: Collaborative Multi-Robot Systems:**
 - Introduction to swarm robotics, where multiple robots collaborate to solve tasks (e.g., warehouse automation, search-and-rescue operations, environmental monitoring)
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 8.2: AI-Driven Automation**
 - Basic concepts of AI-driven automation
 - Characteristics of AI-driven automation systems
 - Automation frameworks for robotic processes in industrial applications
 - **Robotics Safety Standards and Compliance:**
 - Focus on ISO safety standards and robotic safety regulations to ensure compliance in human-robot interactions
 - Use-case examples

- Case studies
- Hands-on exercises
- **Topic 8.3: Industrial Robotics in Quality Control and Predictive Maintenance**
 - How AI is applied in automated production lines, quality control, and predictive maintenance in industrial settings.

Day 15–16: Module 9 - Advanced Robotics: AI for Smart Devices (6 hours per day)

- **Topic 9.1: AI in IoT and Smart Devices**
 - IoT concepts and applications
 - Understanding smart devices and their applications
 - Role of AI in securing IoT devices and networks
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 9.2: Reinforcement Learning in Robotics for Optimization**
 - Use of RL to optimize robotic tasks and processes
 - Use-case examples
 - Case studies
 - Hands-on exercises
- **Topic 9.3: Advanced NLP Applications for Voice-controlled Robots**
 - Development of voice-controlled robots and human-robot dialogue systems for real-world interactions in complex environments.

Day 17–18: Module 10 - Ethics and AI Governance (6 hours per day)

- **Topic 10.1: Ethical Considerations in AI and Robotics**
 - Ethical implications of AI, fairness, and transparency in AI-driven systems
 - **MLOps: Managing the AI Lifecycle from Development to Production:**
 - Discuss CI/CD pipelines, model versioning, and monitoring for model drift and performance
 - Use-case examples
 - Case studies
- **Topic 10.2: AI and Policy Frameworks**
 - Exploring policies and regulations for AI safety and ethics
 - **Ethical AI Frameworks and AI Regulation (GDPR, EU AI Act, etc.):**
 - Dive deeper into ethical AI concerns like algorithmic fairness, transparency, and explore GDPR and EU regulations for AI-driven decision-making and data privacy
 - Use-case examples
 - Case studies
 - Hands-on exercises

Day 19–20: Module 11 - Capstone Project and Final Review (6 hours per day)

- **Topic 11.1: Designing AI Solutions for Real-World Challenges**
 - Design and implementation of a comprehensive AI project integrating robotics, data science, and machine learning
 - Preparing and presenting AI-driven capstone projects
- **Topic 11.2: Final Project Presentation and Review**
 - Reviewing key concepts from the curriculum
 - Real-world capstone project presentations

